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Introduction

The Space Exploration Initiative is considering use of low thrust
(nuclear electric, solar electric) and intermediate thrust (nuclear thermal}

propulsion systems for transfer to Mars and back. Due to the duration of

such a mission, a low thrust minimum-fuel solution is of interest; a savings
of fuel can be substantial if one allows the propulsion system to be turned

off and back on. This switching of the propulsion system helps distinguish

the minimum-fuel problem from the well-known minimum-time problem.

Optimal orbit transfers are also of interest to the development of a

guidance system for orbital maneuvering vehicles which will be needed, for

example, to deliver cargoes to Space Station Freedom.

The problem of optimizing trajectories for an orbit-to-orbit transfer

with minimum-fuel expenditure using a low thrust propulsion system was

discussed in (i), but the code, SECKSPOT (2), which was used is incapable

of handling a general minimum propellant problem.

v

Analysis

To avoid the singularities that may occur when using the classical

elements a, e, i, _, Q, (semi-major axis, eccentricity, angle of inclination,

argument of perigee, longitude of the ascending node) the equinoctial elements

a, h, k, p, and q are used to define the spacecraft's state. The sixth state

element is the eccentric longitude F, which represents the angular position
of the satellite in its orbit. Thus, the spacecraft's state, z, is

• • (a, h, k, p, q) T, or in classical elements,

• • (a, esin(_ + Q), ecos(_ + _), tan(i/2)sin(_),tan(i/2)cos(_)) T,

and [1 ]

F uE + _ + _.

The convention of denoting vectors in bold print and unit vectors with
the circumflex A is used.

It follows that the equations of motion in terms of these equinoctial
elements are

A

z = 2P Mu / mc,

m - -2P / c 2,

where P (_ 0) = power due to thrusters, m (> 0) - mass of the spacecraft,

[2]
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C (> 0) - jet exhaust speed, M - 5 x 3 matrix representing the partiai

derivative of z with respect to the velocity vector r, and the unit vector

A

in the direction of thrust is u, which is also the control for this optimi-

zation problem.

A

Applying the maximum principle to the optimal pair (u, z), it is

clear that one should maximize the Hamiltonian function, H, with respect

to the thrust direction at each point along the optimal trajectory of
the transfer to obtain the minimum-fuel solution. The Hamiltonian function

is defined in terms of the costate (adjoint) variables k z and k m so that

V

[3]

k z - -aH / %z, k m - - %H 1%kin,

where

A A

H(z, m, kz, km, u) - 2P / mc _z T M u - 2P / c 2 X m. [4]
A

Hence, the H_iltonian H in [4] is maximized by aligning u in the direction

of the primer vector, kzT M. Let k denote the magnitude of this primer

vector. Then define the switching function, a, by _ _ _ - m_ m / c. With
this definition, H can be rewritten as H - (2P / mc)a. V

At any point along the trajectory for which a, and hence H, is nega-

tive, H can be maximized by taking P = 0, which amounts to turning the

propulsion system off; while if _, and hence H, is positive, then allow the

propulsion system to be used at full power in the optimal direction of thrust

A

u. SO a < 0 determines a "coast phase", while _ > 0 yields a "thrust phase".

The points at which _ m 0 are called switch points.

Around each orbit the equinoctial elements vary "slowly" and can be

held constant; thus only the "fast" variable F remains. However, in this

situation the actual position in an orbit of the spacecraft is not of interest,

so the dependence on this variable is removed by integration. Using Kepler's

equation which relates the time t to the mean anomaly and hence the eccentric

anomaly, one can perform averaging over an orbit of some specified period by

changing the variable of integration from time t to the eccentric longitude F.

Thus the Hamiltonian and hence the equations of motion can be averaged; note

that since the Hamiltonian is zero for coast phases, one needs only integrate

over thrust phases. In order to perform this integration using a Gaussian

quadrature method, it is necessary to predetermine the switch points along

the trajectory and integrate only over thrust periods, which will begin and

end with a switch point. These averaged derivatives are then solved using

a Runge-Kutta method.



To find the solution it is necessary to determine the initial values

for the costate variables k such that the boundary conditions are satisfied;

that is, the desired final _tate is reached. The transversality conditions

at the final time (which is unspecified) tf, are ks(tf) - a, where a is a

vector of parameters and %m(tf) - 1.

Numerical Algoritb_

The minimum-fuel solution is found by an iterative method which

determines the initial costate values kz(t0) and %m(t0) such the boundary

conditions, a - a?_ - 0, h.- h_r " 0, k -. k_ m 0, p - pf - 0, q - _ _ 0 and%__ - 1 0 (and f - f_ if not averaglng_ are satisfled. This

s_tem of nonlinear equations in terms of kz(t0), whose solution can be

found by a secant method. For an initial guess, an optimal trajectory

is found in the following manner: call the Runge-Kutta integrator,which
calls RKFCT which calculates the derivatives . RKFCT calls SWCHPTS to find

the thrust periods over and orbit, by finding the switchpoits and calls INTEG to

prepare the integrands for quadrature if AVGTST determines that the variables

are changing slowly enough, and if not averaging the partial derivatives

of the equations of motion are calculated; INTEG calls QUAD4 for integration.

QUAD4 calls FCT, which calculates the Hamiltonian, and calls EVALMP and

PRIMER to find the thrust direction. From this Runge-Kutta integrator,

a new state and costate is found. The stopping criterion used is the size of

the semi-major axis.

Conclusions

It appears that one of the difficulties involved with this

problem is convergence of the method considering the sensitivity to

slight perturbations in the initial costate values. Another problem

is the accurate determination of the switch points for the case of

averaging and also not averaging.
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